
Linked Data and the Charm of Weak Semantics

18

B
u
ll
e
ti
n
of
 t
he
 A
ss
oc
ia
tio
n
fo
r
In
fo
rm

at
io
n
S
ci
en
ce
 a
nd
 T
ec
hn
ol
og
y
–
A
pr
il/
M
ay
 2
01
5
–
Vo
lu
m
e
41
, N

um
be
r
4

RDF Ventures to Boldly Meet Your Most Pedestrian Needs
by Eric Prud’hommeaux and Jose Emilio Labra Gayo

Eric Prud’hommeaux is a member of the World Wide Web Consortium (W3C) staff at
MIT. He has participated in developing Semantic Web technologies such as SPARQL
and RDB2RDF in order to meet use cases in the Semantic Web in Health Care and Life
Sciences Interest Group. He developed Shape Expressions in order to meet validation
and transformation use cases for clinical data. He can be reached at eric<at>w3.org
Jose Emilio Labra Gayo is the main researcher of the WESO (Web Semantics Oviedo)
research group and an associate professor at the University of Oviedo, Spain. He can
be reached through his webpage at http://di002.edv.uniovi.es/~labra/

T he Resource Description Framework (RDF) data model was defined
along with an XML syntax in 1999. A class hierarchy (if Spot is a
dog and all dogs are animals, then Spot is an animal) and property

domains and ranges followed a year later. It is perhaps unfortunate that this
model came under the name RDF Schema (RDFS) as it didn’t offer any of
the data constraints available in other schema languages like SQL’s DDL or
W3C XML schema. In hindsight, this development path was clearly in
tension with the priorities of everyday programmers and systems architects
who care primarily about creating and accessing well-structured data and,
perhaps secondarily, about inference. Four years after RDFS, OWL extended
the facilities provided by RDFS into an expressive ontology language that
could describe the information required for instances of classes. However,
once again, the language was oriented toward a healthy distributed
information infrastructure and not that last mile which permits developers to
confidently produce and consume data. While OWL could detect errors
when one used a literal with the wrong data type, it wouldn’t complain if
you say that every vehicle registration has an owner’s first name and last
name and then fail to supply those values. OWL is designed for an open
world semantics, which means that it won’t conclude anything (such as
signaling missing data) based on the absence of provided data. The absence
of evidence is not evidence of absence.
Finally, another four years later in 2008, the RDF community assembled

to deliver a query language to meet the most elementary of application
needs – accessing data. The language met immediately with overwhelming

CON T E N T S NEX T PAGE > N EX T A RT I C L E >< PRE V I OUS PAGE

EDITOR’S SUMMARY
Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been
cast as an RDF Schema, producing data that is well-structured but not validated, permitting
certain illogical relationships. When stakeholders convened in 2014 to consider solutions
to the data validation challenge, a W3C working group proposed Resource Shapes and Shape
Expressions to describe the properties expected for an RDF node. Resistance rose from
concerns about data and schema reuse, key principles in RDF. Ideally data types and
properties are designed for broad use, but they are increasingly adopted with local restrictions
for specific purposes. Resource Shapes are commonly treated as record classes, standing
in for data structures but losing flexibility for later reuse. Of various solutions to the
resulting tensions, the concept of record classes may be the most reasonable basis for
agreement, satisfying stakeholders’ objectives while allowing for variations with constraints.

KEYWORDS

RDF records

data structures information reuse

document schemas logic

validation

Special Section

This document represents the personal opinions of the authors. It does not imply any endorsement by
the W3C staff or membership.

http://di002.edv.uniovi.es/~labra/
mailto:eric<at>w3.org

Linked Data and the Charm of Weak Semantics

19

B
u
ll
e
ti
n
of
 t
he
 A
ss
oc
ia
tio
n
fo
r
In
fo
rm

at
io
n
S
ci
en
ce
 a
nd
 T
ec
hn
ol
og
y
–
A
pr
il/
M
ay
 2
01
5
–
Vo
lu
m
e
41
, N

um
be
r
4

acceptance and adoption. This ability to query led to the development of many
new applications, as well as databases and libraries designed to facilitate
application development. This energy led to the expansion of SPARQL into
Update (analogous to SQL DDL) and HTTP. It did not, however, elegantly
solve the problem of RDF data description and verification. The rest of this
article describes efforts to create a standard validation language and where
this work stands now.

RDF Validation Workshop
In September or 2014, around 30 companies came together to describe

their validation needs and solutions. The overall message was that “it would
be great to use SPARQL, but we want a higher-level language.” Two
communities had very similar proposals, the Dublin Core community with
its Description Set Profiles and Open Services Lifecycle Collaboration
(OSLC) with its Resource Shapes. The principal outcome was that IBM
would make a formal W3C Submission of Resource Shapes and W3C
would charter a working group on RDF validation.
Well, it wasn’t exactly validation because that process was only one

aspect of how these descriptions would be used. Others included generating
interface forms or data. It’s arguable that once you have a semantic for
validation, you’ve conquered the rest, but that doesn’t mean that someone
needing something for interface generation would know to look under “V”
for validation. The name Schema was already taken by another technology.
After much seeking, we decided that Shapes was the best we could do.

Resource Shapes
The Resource Shapes language is an expression of a collection of

properties expected to be associated with some RDF node. It includes a
predicate name, a cardinality (Zero-or-one, Zero-or-more, Exactly-one,
One-or-more) and either a required datatype for RDF Literals or another
shape for objects that are in turn complex structures. This is all written in
RDF (the specifications mandate Turtle, but in principle this could come
from RDF/XML, RDFa and so forth). The specification identifies a few
contexts for validation, which we will call “triggers.” A trigger is a

statement that asserts how some data or interface through which data may
pass is connected to a shape.
After the submission of Resource Shapes and another called Shape

Expressions (which aimed to provide both a human-facing language and a
semantic definition of Resource Shapes), the W3C staff proposed a charter
based on these specifications. This proposal met with pushback from
advocates for SPIN and Stardog ICV, both deployed products providing
constraints. The former is a language for implementing constraints as
SPARQL queries, mostly used with RDFS classes as triggers; the latter is a
reinterpretation of OWL axioms with closed world and unique name
assumptions.

SPARQL Inferencing Notation
SPIN is also a W3C member submission dating back to 2011. It has

received some adoption but is still primarily developed and supported by
Top Quadrant. SPIN is used for validation by attaching SPARQL queries to
RDF classes with the implication that every instance of that class must pass
the SPARQL query (actually, get zero results). SPIN has a template
mechanism for substituting terms from an RDF structure into a SPARQL
query. While some SPIN constraints on class members are expressed as
SPARQL queries, others are RDF graph structures, somewhat like Resource
Shapes.

Stardog ICV
Stardog ICV is a technology marketed by Clark & Parsia as part of the

Stardog product. It reinterprets OWL axioms as constraints on RDF graphs
utilizing a closed-world semantics that permits it to conclude that data has
errors by assuming that it has seen all of the information. Where OWL
assumes that any two URLs may stand for the same thing unless explicitly
stated (with owl:differentFrom), ICV assumes that all URLs stand for
different things in the domain of discourse. The combination of these two
assumptions permits conventional OWL syntax to identify nodes that are
missing assertions or have too many, without an exhaustive enumeration of
all of the things that are different from each other.

P R U D ’ H O M M E A U X a n d L A B R A G A Y O , c o n t i n u e d

TOP O F A RT I C L EC O N T E N T S NEX T PAGE > N EX T A RT I C L E >< PRE V I OUS PAGE

Special Section

Linked Data and the Charm of Weak Semantics

20

B
u
ll
e
ti
n
of
 t
he
 A
ss
oc
ia
tio
n
fo
r
In
fo
rm

at
io
n
S
ci
en
ce
 a
nd
 T
ec
hn
ol
og
y
–
A
pr
il/
M
ay
 2
01
5
–
Vo
lu
m
e
41
, N

um
be
r
4

Data Shapes Charter
Both of these communities believe that the RDF Data Shapes Working

Group (WG) should not take any document as a starting document, but
should instead, selecting use cases, determine their requirements and finally
decide what technology to use as a starting place. There are major
differences in these approaches, which has led to differences within the WG
about how to model shapes and whether they should be classes and, in fact,
whether all classes should be shapes.
Resource Shapes, Shape Expressions and Description Set Profiles all

treat these shapes as distinct from RDF classes. RDF type assertions, the
mechanism by which instance data is attached to classes, have a special
status in RDF. In one sense, they’re just another triple with a very popular
predicate; but all of the inference systems around RDF use type triples as
the centerpiece of their representational facilities and both infer type triples
as well as use type triples to infer other triples. In order to understand why,
we need to dive into the principles that optimize RDF for serendipitous
reuse. This reuse occurs when someone uses the types and properties
designed by someone else for a new purpose, for instance using the address
record from a contact database as part of the data structure in a mapping
application.

Data/Schema Reuse
Most non-RDF schema languages enable one to write down attribute

names, type names and relationships, cardinalities and definitions. This
facility effectively allows one to pick up a schema, say a UML model or
XML schema of an address, and use it with reasonable confidence for its
intended purpose, be that in a music catalog, medical record or large bank
transfer. The problem is that these restrictions are tuned to meet the needs of
a small number of applications (frequently one) because they focus on the
constraints of the business process instead of the real-world entities
involved in those business processes. When we want to reuse those
definitions, we end up building complex class hierarchies with lots of
branches to capture all of the constraints for all of the use cases we can
envision. While it’s possible to meet the structural informatics requirements

for a small enterprise, it becomes much harder to model the more diverse
needs of a more distributed organization with evolving needs. Popular RDF
ontologies foster reuse of their data structures, describing the entities and
leaving out the constraints that tie them to a particular use. This approach
makes them available to the broadest possible set of use cases.
SemWeb netizens tend to avoid creating redundant properties and

classes, instead borrowing a few predicates from this ontology and some
classes or identifiers from that one. The resulting heterogeneity results in
data optimized for reuse. If some issue-tracking database talks about the
user who submitted a bug, they’ll likely use popular identifiers from the
Friend of a Friend (FOAF) ontology or Schema.org to talk about the given
name, email address and so forth, adding properties from their own
ontology where required, for example, to capture a relationship between
entities like the submitter to some issue-tracking system. This submitter
record has all of the necessary data for the issue tracker, but people, tools
and queries that just know FOAF can extract the bits they need as well.
In theory, there’s nothing that says that a shape can’t delineate some

class; it’s essentially a recipe for determining membership in a set, but the
implications of validity with respect to a shape become very complicated
when they interact with RDFS and OWL inferences. Another problem is
that these shapes that define the structure are fundamentally different from
the class definitions described above. While many classes claim to model
the real world, others, let’s call them record classes, simply capture some
information for a particular purpose.

Record Classes
Attaching business process-specific constraints (often cardinalities) to

types demonstrably hampers reusability, but lots of folks do it, particularly
if they don’t mind changing definitions when their needs evolve. This
practice is of course feasible in small or authoritative deployments but hard
to scale to widely reused data. One reasonable compromise is to view the
schema as a description, not of real-world entities, but instead of records
native to some system. While it may be foolhardy to design an ontology
with the assumption that a person has only one email address, it makes

P R U D ’ H O M M E A U X a n d L A B R A G A Y O , c o n t i n u e d

TOP O F A RT I C L EC O N T E N T S NEX T PAGE > N EX T A RT I C L E >< PRE V I OUS PAGE

Special Section

P R U D ’ H O M M E A U X a n d L A B R A G A Y O , c o n t i n u e d

21
TOP O F A RT I C L EC O N T E N T S NEX T PAGE > N EX T A RT I C L E >< PRE V I OUS PAGE

Special Section
Linked Data and the Charm of Weak Semantics

perfect sense for a software system or business process to assert that it only
handles one email address per user. Without considering the duality between
entities and the records that describe them, it looks counter-productive to
conflate shapes and classes, but classes can stand for data structures as well.
If a system then conflates, for example, users and user records, it does so at
the risk of sacrificing some flexibility and that ideal state of serendipitous
reuse that we all appreciate in RDF.
While the “record class” solution appears to eliminate an impasse, there

remains the problem of deciding how to attach shape constraints to classes.
One proposal that all classes also be shapes met with resistance on multiple
fronts: it makes, for example, FOAF Person a shape, which is not what
people have in mind when attaching FOAF types to data; it effectively
creates a new inference mechanism with new ways to create
inconsistencies; and it encourages people to conflate non-record classes
with the entities they represent. The arguments on the other side are
compelling as well: if there is a subsumption relationship between shapes
(basically, one shape can inherit from another), we end up duplicating the
logic of the RDFS subclass; if we have to invent a relationship between
instances and shapes, this relationship has the appearance of being a clone
of RDF’s type relationship tailored for use with shapes.
A practical way to model record classes is to define a relationship, say

“classShape,” between a class and a shape that states that every individual
in that class must conform to that shape. This definition makes the assertion
that a class has invariant (universal, global, ...) constraints, a conspicuous
speech act. This also provides a consistent way to query for the invariants
associated with a class.
In RDF, there is nothing that prevents one from using a node for

multiple purposes. In OWL, this sort of “punning” allows one to use the
same identifier for disjoint concepts like classes vs. individuals. This
situation would use an identifier for both a class and a shape. Even if the
class and the shape were punned (that is, were the same RDF node),
consistent use of the classShape relationship would facilitate simpler
discovery and reduce confusion and ambiguity. One could create a reflexive
subproperty of “classShape,” though doing so is probably not of real value.

Discriminating Types
Above, we see the tension between folks who have been using classes to

define structure and those who have developed their classes for maximal
reuse. Another tension within the Shapes Working Group lies in the fact that
conventional SPIN relies very heavily on type assertions, either explicitly
included in the data or inferred from rules about the predicates used in the
data. When attaching constraints to some class, the natural way to invoke
validation is to examine each typed object and test it against the constraints
corresponding to those types. If your constraints don’t happen to be the
product of all of the constituent classes, you need to invent a discriminating
type, a new type assertion that connects the instance data to constraints that
apply to its use in some context. This approach either requires the instance
data to include discriminating types for all of its potential consumers or
some other way to infer the new types from the existing structure. Of
course, if those constraints don’t apply in all contexts, you have a complex
system where one must assert the discriminating type for some process,
validate for that process and then strike either the type assertion or the
constraints from view before examining that same data for use in a different
context. Once again, the tension appears to lie fundamentally in the mode of
use of RDF, optimizing for reuse vs. centralized controls and requirements.

Path Forward
An ideal shapes model would be intuitive and familiar to SPIN users at

the same time as meeting the goals of reusable types and nuanced validation.
The concept of record classes appears to be a promising basis for consensus
within the RDF Data Shapes Working Group. The contextual validation that
drove the development of Resource Shapes, Shape Expressions and Description
Set Profiles are all easily satisfied by having a shape object and a variety of
ways to apply a shape to some objects. Some of these ways may be expressed
in RDF, but, just as with XML validation, it’s not necessary that all triggers
have a defined representation in the data. If someone wants to use the same
identifier for shapes and classes, they can easily signal that with a classShape
property pointing back at the same node, but in the future they will have more
controls over the association between data and the shapes that constrain thatB

u
ll
e
ti
n
of
 t
he
 A
ss
oc
ia
tio
n
fo
r
In
fo
rm

at
io
n
S
ci
en
ce
 a
nd
 T
ec
hn
ol
og
y
–
A
pr
il/
M
ay
 2
01
5
–
Vo
lu
m
e
41
, N

um
be
r
4

22

B
u
ll
e
ti
n
of
 t
he
 A
ss
oc
ia
tio
n
fo
r
In
fo
rm

at
io
n
S
ci
en
ce
 a
nd
 T
ec
hn
ol
og
y
–
A
pr
il/
M
ay
 2
01
5
–
Vo
lu
m
e
41
, N

um
be
r
4

TOP O F A RT I C L EC O N T E N T S NEX T PAGE > N EX T A RT I C L E >< PRE V I OUS PAGE

Special Section
Linked Data and the Charm of Weak Semantics

data. This solution provides everyone with a useful new tool – shape
validation – which they can apply in as nuanced a manner as they see fit.
It is easy to criticize requirements on discriminating types as arcane and

unnecessary, but it reflects a real deployment. Most early iterations in
extreme programming appear naive after one extends the system to deal
with more use cases, just as more developed models appear complex to
those with the use cases met by the earlier model. The RDF Data Shapes

WG can profit from the experience of SPIN and ICV. New iterations of
SPIN can provide users with more nuanced ways to initiate validation that
avoids the creation of mutually exclusive constraints.

Acknowledgement: The authors gratefully acknowledge extensive and
helpful textual suggestions and conceptual clarifications to a draft of this
article from Peter Patel-Schneider. �

P R U D ’ H O M M E A U X a n d L A B R A G A Y O , c o n t i n u e d

