The Semantic Web is an extension of the current Web in which the meaning of information is clearly and explicitly linked from the information itself, better enabling computers and people to work in cooperation. The World Wide Web Consortium (W3C) Semantic Web Activity, in collaboration with a large number of researchers and industrial partners, is tasked with defining enabling standards and technologies to allow data on the Web to be defined and linked in such a way that it can be used for more effective discovery, automation, integration and reuse across various applications. The Web can reach its full potential if it becomes a place where data can be shared and processed by automated tools as well as by people.

The Semantic Web fosters and encourages greater data reuse by making it available for purposes not planned or conceived by the data provider. Suppose you want, for example, to locate news articles published in the previous month about companies headquartered in cities with populations under 500,000 or to compare the stock price of a company with the weather at its home base or to search online product catalogs for an equivalent replacement part for something. The information may be there in the Web, but currently only in a form that requires intensive human processing.

The Semantic Web will allow two things. First, it will allow this information to surface in the form of data, so that a program doesn’t have to strip the formatting, pictures and ads off a Web page and guess at how the remaining page markup denotes the relevant bits of information. Second, it will allow people to write (or generate) files that explain – to a machine – the relationship between different sets of data. For example, one will be able to make a “semantic link” between a database with a “zip-code” column and a form with a “zip” field to tell the machines that they do actually mean the same thing. This will allow machines to follow links and facilitate the integration of data from many different sources. When the relationships among data are fully accessible to our machines, our machines will be able to help us browse those relationships and interpret the data as well as assess the appropriateness of the data for our intended purposes.

This notion of being able to “semantically link” various resources, such as documents, images, people or concepts, is an important one. With semantic links we can move from the current Web of simple relationships like “links-to” to a more expressive, semantically rich Web – a Web where we can incrementally add meaning and express a whole new set of relationships (hasLocation, worksFor, isAuthorOf, hasSubjectOf, dependsOn, etc.). These relationships can make explicit the particular contextual relationships that are either implicit or expressed in the current Web only in prose that is impossible for machines to interpret. This enhancement in turn opens doors for a whole new set of effective information integration, management and automated services.

The Semantic Web is a place where strongly controlled (or centralized) metadata vocabulary registries can flourish alongside special-purpose, small community or even “private” vocabularies. The Semantic Web technology supports free co-mingling of vocabularies as well as the ad-hoc definition of new relationships to construct data descriptions. In addition, instructions for processing data in specific ways can be expressed in the Semantic Web using the same technologies used to describe the data. So discovery mechanisms that work for data will also work for procedures to operate on the data. Trust mechanisms to permit an application to evaluate whether specific data or procedures are suitable for use in a given context are simply more data and relationships in the Semantic Web architecture; that is, they are an integral part of the Semantic Web vision.

The development of the Semantic Web is well underway in at least two very important areas: (1)
from the infrastructural and architectural position defined by W3C and (2) in a more directed application-specific fashion by those leveraging Semantic Web technologies in various demonstrations, applications and products. This article provides a brief introduction to both of these developmental areas with a specific focus on those in which the W3C is directly involved.

More information on the Semantic Web, including additional projects, products, efforts and future directions, is available on the Semantic Web home page (www.w3.org/2001/sw/).

Enabling Standards

Uniform Resource Identifiers (URIs) (www.w3.org/Addressing/) are a fundamental component of the current Web and are in turn a foundation for the Semantic Web. URIs provide the ability for uniquely identifying resources of all types—not just Web documents—as well as relationships among resources. An additional fundamental contribution toward the Semantic Web has been the development of the Extensible Markup Language (XML) (www.w3.org/XML/). XML provides an interoperable syntactic foundation upon which the languages to represent relationships and meaning are built. The Resource Description Framework (RDF) (www.w3.org/RDF/) family of languages leverages XML, URIs and the Web to provide a powerful means of expressing and representing these relationships and meaning.

The W3C Semantic Web Activity (www.w3.org/2001/sw/) plays a leadership role in both the design of specifications and the open, collaborative development of technologies focused on representing relationships and meaning and the automation, integration and reuse of data. The base level RDF 1.0 standard was defined in 1999. RDF 1.0 and RDF Schema (RDF Vocabularies) are currently being refined based on implementation experience, and more expressive higher layers are being addressed.

The base level standards for supporting the Semantic Web are currently being refined by the RDF Core (www.w3.org/2001/sw/RDFCore/) Working Group. This group is charted to revise and formalize the original RDF Model and Syntax Recommendation (www.w3.org/TR/1999/REC-rdf-syntax-19990222/), which provides a simple, yet powerful, assertional framework for representing information in the Web. Additionally, this group is tasked to layer upon this general descriptive framework a simple means for defining RDF Vocabularies (www.w3.org/TR/rdf-schema/). RDF Vocabularies are descriptive terms such as service, book, image, title, description or rights that are useful to communities interested in recoding information in a way that enables effective reuse, integration and aggregation of data. Additional deliverables include a precise semantic theory (www.w3.org/TR/rdf-mt/) associated with these standards useful for supporting future work, as well as a primer (www.w3.org/TR/rdf-primer/) designed to provide the reader the basic fundamentals required to effectively use RDF in their particular applications.

The Web Ontology (www.w3.org/2001/sw/WebOnt/) Working Group standards efforts are designed to build upon the RDF core work a language, OWL (www.w3.org/TR/owl-ref/), for defining structured, Web-based ontologies. Ontologies can be used by automated tools to power advanced services such as more accurate Web search, intelligent software agents and knowledge management. Web portals, corporate website management, intelligent agents and ubiquitous computing are just some of the identified scenarios (www.w3.org/TR/webont-req/) that helped shape the requirements for this work.

Semantic Web Advanced Development (SWAD)

Code modules such as libwww (www.w3.org/Library/) accelerated the early deployment of the Web, and to a similar end the W3C is devoting resources to the creation and distribution of components to assist in the deployment of the Semantic Web.

These W3C Semantic Web Advanced Development initiatives are designed to work in collaboration with a large number of researchers and industrial partners to stimulate various complementary areas of development that will help facilitate further deployment and future standards work associated with the Semantic Web.

SWAD DAML. SWAD DAML is a project within the Defense Advanced Research Project Agency (DARPA) Agent Markup Language (DAML) (www.daml.org/) Program. The SWAD DAML (www.w3.org/2000/01/sw/daml) project combines research and development to define the architectural layering of the languages of the Semantic Web infrastructure. SWAD DAML builds critical components of that infrastructure and demonstrates how those components can be used by practical, user-oriented applications. It both seeks to define a logic language framework on top of RDF and the OWL vocabulary and to build basic tools for working with RDF, OWL and this logic framework.

To demonstrate some practical applications of these tools to manipulate structured information, SWAD DAML is deploying them to maintain the ongoing activities of the W3C, including access control, collaboration, document workflow tracking and meeting management. Another component of SWAD DAML is focused on the informal and often heuris-
tic processes involved in document management in a person-
alized information environment. Integrated into SWAD DAML
will be tools to enable authors to control terms under which
personal or sensitive information is used by others, a critical
feature to encourage sharing of semantic content.

SWAD-Europe. SWAD-Europe (www.w3.org/2001/sw/
Europe/) aims to highlight practical examples of where real
value can be added to the Web through Semantic Web tech-
nologies. The focus of this Advanced Development initiative
is on providing practical demonstrations of how (1) the
Semantic Web can address problems in areas such as sitemaps,
news channel syndication, thesauri, classification, topic maps,
calendaring, scheduling, collaboration, annotations, quality
ratings, shared bookmarks, Dublin Core (http://dublincore.org/)
for simple resource discovery, Web service description and
discovery, trust and rights management and (2) effectively
and efficiently integrate them.

The focus of the SWAD-Europe deliverables are to exploit
the enabling standards that have already been developed and
not to depend upon future technologies identified with the
Semantic Web architecture. Thus, the SWAD-Europe work is
demonstrating the potential of what can be built on existing
Semantic Web standards.

SWAD-Europe will additionally engage in exploratory
implementation and pre-consensus design in such areas as
querying and the integration of multiple Semantic Web tech-
nologies. This effort will provide input and experiences to
future standards work.

SWAD Simile. Under the SWAD initiatives, W3C is also working
with Hewlett-Packard (www.hp.com/), Massachusetts Institute
of Technology (MIT) Libraries (http://libraries.mit.edu/), and
MIT’s Laboratory for Computer Science (MIT LCS) (www.
mit.edu) on Project Simile (http://web.mit.edu/simile/
www/). Simile seeks to enhance interoperability among dig-
tal assets, schemas, metadata and services across distributed
individual, community and institutional stores and across
value chains to provide useful end-user services by drawing
upon the assets, schemas and metadata held in such stores.
Simile will leverage and extend DSpace (http://dspace.org/),
also developed by MIT and HP, enhancing DSpace’s support
for arbitrary schemas and metadata, primarily through the
application of RDF and Semantic Web techniques. The project
also aims to implement a digital asset dissemination archi-
tecture based upon Web standards, enabling services to oper-
ate upon relevant assets, schemas and metadata within dis-
tributed stores.

The Simile effort will be grounded by focusing on well-
deﬁned, real-world cases in the libraries domain. Since parallel
work is underway to deploy DSpace at a number of leading
research libraries, we hope that such an approach will lead to
a powerful deployment channel through which the utility and
readiness of Semantic Web tools and techniques can be demon-
strated compellingly in a visible and global community.

SWAD Oxygen. The Oxygen Project (http://oxygen.lcs.mit.edu/),
a joint effort of the MIT LCS and the MIT Artificial Intelli-
gence Laboratory (MIT AI), is designed to make pervasive,
human-centered computing a reality through a combination of
speciﬁc user and system technologies. Oxygen’s user tech-
nologies directly address human interaction needs: automation
(http://oxygen.lcs.mit.edu/Automation.html), individualized
knowledge access (http://oxygen.lcs.mit.edu/Knowledge
Access.html) and collaboration (http://oxygen.lcs.mit.edu/
Collaboration.html) technologies help us perform what we
want to do in the ways we like to do them. In Oxygen, these
technologies enable the formation of spontaneous collabora-
tive regions that provide support for recording, archiving and
linking fragments of meeting records to issues, summaries,
keywords and annotations.

A goal of the Semantic Web is to foster similar collabo-
ratve environments – human-to-human and human-to-machine
– and the W3C is working with project Oxygen to help real-
ize this goal. The ability for “anyone to say anything about
anything” is an important characteristic of the current Web
and is a fundamental principal of the Semantic Web. Knowing
who is making these assertions is increasingly important in
trusting these descriptions and enabling a “Web of Trust.” The
Annotea (www.w3.org/2001/Annotea/) advanced develop-
ment project provides the basis for associating descriptive
information, comments, notes, reviews, explanations or other
types of external remarks with any resource. Together with
XML digital signatures, the Annotea project will provide a
test-bed for “Web-of-Trust” Semantic Web applications.

Education and Outreach

To fulfill its leadership role and facilitate the effectiveness
and efficiency of the W3C Semantic Web Activity, a strong
focus on education and outreach is important. The RDF
Interest Group (www.w3.org/RDF/Interest/) continues to be an
extremely effective forum in which developers and users coordi-
nate public implementation, share deployment experiences
of RDF and help each other promote the Semantic Web.

Arising out of RDF Interest Group discussions are several

Bulletin of the American Society for Information Science and Technology—April/May 2003
The Semantic Web provides an infrastructure that enables not just Web pages, but databases, services, programs, sensors, personal devices and even household appliances to both consume and produce data on the Web.

public issue-specific mailing lists, including RDF-based calendar and group scheduling systems (http://lists.w3.org/Archives/Public/www-rdf-calendar/), logic-based languages (http://lists.w3.org/Archives/Public/www-rdf-logic/), queries and rules for RDF data (http://lists.w3.org/Archives/Public/www-rdf-rules/) and distributed annotation and collaboration (http://lists.w3.org/Archives/Public/www-annotation/) systems. Each of these discussion groups focuses on complementary areas of interest associated with the Semantic Web activity.

Future education and outreach plans include the formation of a Semantic Web education and outreach group designed to develop strategies and materials to increase awareness among the Web community of the need for and benefits of the Semantic Web and to educate the Web community regarding best practice solutions and enabling technologies associated with the Semantic Web.

Conclusion

The Semantic Web is an extension of the current Web in which information is given well-defined meaning, better enabling computers and people to work in cooperation. It is based on the idea of having data on the Web defined and linked such that it can be used for more effective discovery, automation, integration and reuse across various applications.

The Semantic Web provides an infrastructure that enables not just Web pages, but databases, services, programs, sensors, personal devices and even household appliances to both consume and produce data on the Web. Software agents can use this information to search, filter and prepare information in new and exciting ways to assist Web users. New languages make significantly more of the information on the Web machine-readable to power this vision and will enable the development of a new generation of technologies and toolkits.

The seeds of the Semantic Web have been present within the Web from the time of Tim Berners-Lee’s original Web proposal. For the Web to reach its full potential, it must grow and incorporate this Semantic Web vision, providing a universally accessible platform that allows data to be shared and processed by automated tools as well as by people. The W3C Semantic Web Activity is a multi-faceted program of basic research, collaborative technology development and open consensus-based standards setting to bring the Semantic Web to a reality and open the door to a whole new set of effective information integration, management and automation services.

For Further Reading

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic Web Home Page</td>
<td>W3C, Semantic Web; www.w3.org/2001/sw/</td>
</tr>
<tr>
<td>URI</td>
<td>W3C, Naming and Addressing; URIs, URLs, ...; www.w3.org/Addressing/</td>
</tr>
</tbody>
</table>